mountaineering strategy

In the framework of the computational determination of highly accurate vertical excitation energies in small organic compounds, we explore the possibilities offered by the equation-of-motion formalism relying on the approximate fourth-order coupled-cluster (CC) method, CC4. We demonstrate, using an extended set of more than 200 reference values based on CC including up to quadruples excitations (CCSDTQ), that CC4 is an excellent approximation to CCSDTQ for excited states with a dominant contribution from single excitations with an average deviation as small as 0.003 eV. We next assess the accuracy of several additive basis set correction schemes, in which vertical excitation energies obtained with a compact basis set and a high-order CC method are corrected with lower-order CC calculations performed in a larger basis set. Such strategies are found to be overall very beneficial, though their accuracy depends significantly on the actual scheme. Finally, CC4 is employed to improve several theoretical best estimates of the QUEST database for molecules containing between four and six (nonhydrogen) atoms, for which previous estimates were computed at the CCSDT level.

Loos, P.-F.; Lipparini, F.; Matthews, D. A.; Blondel, A. & Jacquemin, D.
J. Chem. Theory Comput. 18, 4418-4427 (2022) https://doi.org/10.1021/acs.jctc.2c00416

Pin It

MOLECOLAB - Research Group at the Department of Chemistry of the University of Pisa
Via Giuseppe Moruzzi, 13 - 56124 Pisa, Italy
Admin LogIn/LogOut  |  Privacy Policy

This website uses cookies to ensure you get the best experience

Cookies sent by this website are not used for profiling visitors or obtaining users’ personal information